
Random HBase topics

HBase

Wednesday, March 21, 2012

ACID in HBase

By Lars Hofhansl

As we know, ACID stands for Atomicity, Consistency, Isolation, and Durability.

HBase supports ACID in limited ways, namely Puts to the same row provide all ACID guarantees.

(HBASE-3584 adds multi op transactions and HBASE-5229 adds multi row transactions, but the

principle remains the same)

So how does ACID work in HBase?

HBase employs a kind of MVCC. And HBase has no mixed read/write transactions.

The nomenclature in HBase is bit strange for historical reasons. In a nutshell each RegionServer

maintains what I will call "strictly monotonically increasing transaction numbers".

When a write transaction (a set of puts or deletes) starts it retrieves the next highest transaction

number. In HBase this is called a WriteNumber.

When a read transaction (a Scan or Get) starts it retrieves the transaction number of the last

committed transaction. HBase calls this the ReadPoint.

Each created KeyValue is tagged with its transaction's WriteNumber (this tag, for historical

reasons, is called the memstore timestamp in HBase. Note that this is separate from the

application-visible timestamp.)

The highlevel flow of a write transaction in HBase looks like this:

lock the row(s), to guard against concurrent writes to the same row(s)1.

retrieve the current writenumber2.

apply changes to the WAL (Write Ahead Log)3.

apply the changes to the Memstore (using the acquired writenumber to tag the KeyValues)4.

commit the transaction, i.e. attempt to roll the Readpoint forward to the acquired

Writenumber.

5.

unlock the row(s)6.

The highlevel flow of a read transaction looks like this:

open the scanner1.

get the current readpoint2.

filter all scanned KeyValues with memstore timestamp > the readpoint3.

with Google Friend C

Members

Already a member?

Followers

I'm a software engineer in

and databases.

This blog is about the HB

which I am a committer.

I work as an architect at S

View my complete profile

About Me

►

►

▼

Blog Archive

9 mais Próximo blog»

HBase: ACID in HBase http://hadoop-hbase.blogspot.com.br/2012/03/ac...

1 of 3 15-09-2014 00:14

Posted by Lars Hofhansl at 2:20 PM

close the scanner (this is initiated by the client)4.

In reality it is a bit more complicated, but this is enough to illustrate the point. Note that a reader

acquires no locks at all, but we still get all of ACID.

It is important to realize that this only works if transactions are committed strictly serially;

otherwise an earlier uncommitted transaction could become visible when one that started later

commits first. In HBase transaction are typically short, so this is not a problem.

HBase does exactly that: All transactions are committed serially.

Committing a transaction in HBase means settting the current ReadPoint to the transaction's

WriteNumber, and hence make its changes visible to all new Scans.

HBase keeps a list of all unfinished transactions. A transaction's commit is delayed until all prior

transactions committed. Note that HBase can still make all changes immediately and

concurrently, only the commits are serial.

Since HBase does not guarantee any consistency between regions (and each region is hosted at

exactly one RegionServer) all MVCC data structures only need to be kept in memory on every

region server.

The next interesting question is what happens during compactions.

In HBase compactions are used to join multiple small store files (create by flushes of the

MemStore to disk) into a larger ones and also to remove "garbage" in the process.

Garbage here are KeyValues that either expired due to a column family's TTL or VERSION

settings or were marked for deletion. See here and here for more details.

Now imagine a compaction happening while a scanner is still scanning through the KeyValues. It

would now be possible see a partial row (see here for how HBase defines a "row") - a row

comprised of versions of KeyValues that do not reflect the outcome of any serializable transaction

schedule.

The solution in HBase is to keep track of the earliest readpoint used by any open scanner and

never collect any KeyValues with a memstore timestamp larger than that readpoint. That logic

was - among other enhancements - added with HBASE-2856, which allowed HBase to support

ACID guarantees even with concurrent flushes.

HBASE-5569 finally enables the same logic for the delete markers (and hence deleted

KeyValues).

Lastly, note that a KeyValue's memstore timestamp can be cleared (set to 0) when it is older than

the oldest scanner. I.e. it is known to be visible to every scanner, since all earlier scanner are

finished.

Update Thursday, March 22:

A couple of extra points:

The readpoint is rolled forward even if the transaction failed in order to not stall later

transactions that waiting to be committed (since this is all in the same process, that just

mean the roll forward happens in a Java finally block).

When updates are written to the WAL a single record is created for the all changes.

There is no separate commit record.

When a RegionServer crashes, all in flight transaction are eventually replayed on

another RegionServer if the WAL record was written completely or discarded otherwise.

►

HBase: ACID in HBase http://hadoop-hbase.blogspot.com.br/2012/03/ac...

2 of 3 15-09-2014 00:14

Newer Post Older PostHome

Subscribe to: Post Comments (Atom)

+9 Recommend this on Google

Comment as: Select profile...

PublishPublish PreviewPreview

2 comments:

Jim Green May 23, 2014 at 3:19 PM

Nice post!

Reply

pranab Dash June 10, 2014 at 9:26 PM

Informative post, provides good insight on the transactional characteristics :)

Reply

Simple template. Powered by Blogger.

HBase: ACID in HBase http://hadoop-hbase.blogspot.com.br/2012/03/ac...

3 of 3 15-09-2014 00:14

