
1.2. Quick Start - Standalone HBase

Prev Chapter 1. Getting Started Next

1.2. Quick Start - Standalone HBase

This guide describes setup of a standalone HBase instance running against the local filesystem. This is not an
appropriate configuration for a production instance of HBase, but will allow you to experiment with HBase.
This section shows you how to create a table in HBase using the hbase shell CLI, insert rows into the table,
perform put and scan operations against the table, enable or disable the table, and start and stop HBase. Apart
from downloading HBase, this procedure should take less than 10 minutes.

Local Filesystem and Durability

The below advice is for HBase 0.98.2 and earlier releases only. This is fixed in HBase 0.98.3 and
beyond. See HBASE-11272 and HBASE-11218.

Using HBase with a local filesystem does not guarantee durability. The HDFS local filesystem
implementation will lose edits if files are not properly closed. This is very likely to happen when you
are experimenting with new software, starting and stopping the daemons often and not always
cleanly. You need to run HBase on HDFS to ensure all writes are preserved. Running against the
local filesystem is intended as a shortcut to get you familiar with how the general system works, as
the very first phase of evaluation. See https://issues.apache.org/jira/browse/HBASE-3696 and its
associated issues for more details about the issues of running on the local filesystem.

Loopback IP - HBase 0.94.x and earlier

The below advice is for hbase-0.94.x and older versions only. This is fixed in hbase-0.96.0 and
beyond.

Prior to HBase 0.94.x, HBase expected the loopback IP address to be 127.0.0.1. Ubuntu and some
other distributions default to 127.0.1.1 and this will cause problems for you . See Why does HBase
care about /etc/hosts? for detail.

Example 1.1. Example /etc/hosts File for Ubuntu

The following /etc/hosts file works correctly for HBase 0.94.x and earlier, on Ubuntu. Use this as a
template if you run into trouble.

127.0.0.1 localhost
127.0.0.1 ubuntu.ubuntu-domain ubuntu

1.2.1. JDK Version Requirements

HBase requires that a JDK be installed. See Table 2.1, “Java” for information about supported JDK versions.

1.2.2. Get Started with HBase

Procedure 1.1. Download, Configure, and Start HBase

Choose a download site from this list of Apache Download Mirrors. Click on the suggested top link. This
will take you to a mirror of HBase Releases. Click on the folder named stable and then download the binary
file that ends in .tar.gz to your local filesystem. Be sure to choose the version that corresponds with the
version of Hadoop you are likely to use later. In most cases, you should choose the file for Hadoop 2, which
will be called something like hbase-0.98.3-hadoop2-bin.tar.gz. Do not download the file ending in src.tar.gz for
now.

1.

Extract the downloaded file, and change to the newly-created directory.

$ tar xzvf hbase-<?eval ${project.version}?>-hadoop2-bin.tar.gz
$ cd hbase-<?eval ${project.version}?>-hadoop2/

2.

For HBase 0.98.5 and later, you are required to set the JAVA_HOME environment variable before starting
HBase. Prior to 0.98.5, HBase attempted to detect the location of Java if the variables was not set. You can
set the variable via your operating system's usual mechanism, but HBase provides a central mechanism,

3.

1.2. Quick Start - Standalone HBase http://hbase.apache.org/book/quickstart.html

1 of 9 17-09-2014 21:58

conf/hbase-env.sh. Edit this file, uncomment the line starting with JAVA_HOME, and set it to the appropriate
location for your operating system. The JAVA_HOME variable should be set to a directory which contains the
executable file bin/java. Most modern Linux operating systems provide a mechanism, such as /usr/bin
/alternatives on RHEL or CentOS, for transparently switching between versions of executables such as
Java. In this case, you can set JAVA_HOME to the directory containing the symbolic link to bin/java, which is
usually /usr.

JAVA_HOME=/usr

Note

These instructions assume that each node of your cluster uses the same configuration. If this is
not the case, you may need to set JAVA_HOME separately for each node.

Edit conf/hbase-site.xml, which is the main HBase configuration file. At this time, you only need to specify
the directory on the local filesystem where HBase and Zookeeper write data. By default, a new directory is
created under /tmp. Many servers are configured to delete the contents of /tmp upon reboot, so you
should store the data elsewhere. The following configuration will store HBase's data in the hbase directory,
in the home directory of the user called testuser. Paste the <property> tags beneath the <configuration>
tags, which should be empty in a new HBase install.

Example 1.2. Example hbase-site.xml for Standalone HBase

<configuration>
 <property>
 <name>hbase.rootdir</name>
 <value>file:///home/testuser/hbase</value>
 </property>
 <property>
 <name>hbase.zookeeper.property.dataDir</name>
 <value>/home/testuser/zookeeper</value>
 </property>
</configuration>

You do not need to create the HBase data directory. HBase will do this for you. If you create the directory,
HBase will attempt to do a migration, which is not what you want.

4.

The bin/start-hbase.sh script is provided as a convenient way to start HBase. Issue the command, and if all
goes well, a message is logged to standard output showing that HBase started successfully. You can use
the jps command to verify that you have one running process called HMaster. In standalone mode HBase
runs all daemons within this single JVM, i.e. the HMaster, a single HRegionServer, and the ZooKeeper
daemon.

Note

Java needs to be installed and available. If you get an error indicating that Java is not installed,
but it is on your system, perhaps in a non-standard location, edit the conf/hbase-env.sh file and
modify the JAVA_HOME setting to point to the directory that contains bin/java your system.

5.

Procedure 1.2. Use HBase For the First Time

Connect to HBase.

Connect to your running instance of HBase using the hbase shell command, located in the bin/ directory
of your HBase install. In this example, some usage and version information that is printed when you start
HBase Shell has been omitted. The HBase Shell prompt ends with a > character.

$./bin/hbase shell
hbase(main):001:0>

1.

Display HBase Shell Help Text.

Type help and press Enter, to display some basic usage information for HBase Shell, as well as several
example commands. Notice that table names, rows, columns all must be enclosed in quote characters.

2.

Create a table.

Use the create command to create a new table. You must specify the table name and the ColumnFamily

3.

1.2. Quick Start - Standalone HBase http://hbase.apache.org/book/quickstart.html

2 of 9 17-09-2014 21:58

name.

hbase> create 'test', 'cf'
0 row(s) in 1.2200 seconds

List Information About your Table

Use the list command to

hbase> list 'test'
TABLE
test
1 row(s) in 0.0350 seconds

=> ["test"]

4.

Put data into your table.

To put data into your table, use the put command.

hbase> put 'test', 'row1', 'cf:a', 'value1'
0 row(s) in 0.1770 seconds

hbase> put 'test', 'row2', 'cf:b', 'value2'
0 row(s) in 0.0160 seconds

hbase> put 'test', 'row3', 'cf:c', 'value3'
0 row(s) in 0.0260 seconds

Here, we insert three values, one at a time. The first insert is at row1, column cf:a, with a value of value1.
Columns in HBase are comprised of a column family prefix, cf in this example, followed by a colon and
then a column qualifier suffix, a in this case.

5.

Scan the table for all data at once.

One of the ways to get data from HBase is to scan. Use the scan command to scan the table for data. You
can limit your scan, but for now, all data is fetched.

hbase> scan 'test'
ROW COLUMN+CELL
 row1 column=cf:a, timestamp=1403759475114, value=value1
 row2 column=cf:b, timestamp=1403759492807, value=value2
 row3 column=cf:c, timestamp=1403759503155, value=value3
3 row(s) in 0.0440 seconds

6.

Get a single row of data.

To get a single row of data at a time, use the get command.

hbase> get 'test', 'row1'
COLUMN CELL
 cf:a timestamp=1403759475114, value=value1
1 row(s) in 0.0230 seconds

7.

Disable a table.

If you want to delete a table or change its settings, as well as in some other situations, you need to disable
the table first, using the disable command. You can re-enable it using the enable command.

hbase> disable 'test'
0 row(s) in 1.6270 seconds

hbase> enable 'test'
0 row(s) in 0.4500 seconds

Disable the table again if you tested the enable command above:

hbase> disable 'test'
0 row(s) in 1.6270 seconds

8.

Drop the table.9.

1.2. Quick Start - Standalone HBase http://hbase.apache.org/book/quickstart.html

3 of 9 17-09-2014 21:58

To drop (delete) a table, use the drop command.

hbase> drop 'test'
0 row(s) in 0.2900 seconds

Exit the HBase Shell.

To exit the HBase Shell and disconnect from your cluster, use the quit command. HBase is still running in
the background.

10.

Procedure 1.3. Stop HBase

In the same way that the bin/start-hbase.sh script is provided to conveniently start all HBase daemons, the
bin/stop-hbase.sh script stops them.

$./bin/stop-hbase.sh
stopping hbase....................
$

1.

After issuing the command, it can take several minutes for the processes to shut down. Use the jps to be
sure that the HMaster and HRegionServer processes are shut down.

2.

1.2.3. Intermediate - Pseudo-Distributed Local Install

After working your way through Section 1.2, “Quick Start - Standalone HBase”, you can re-configure HBase to
run in pseudo-distributed mode. Pseudo-distributed mode means that HBase still runs completely on a single
host, but each HBase daemon (HMaster, HRegionServer, and Zookeeper) runs as a separate process. By
default, unless you configure the hbase.rootdir property as described in Section 1.2, “Quick Start - Standalone
HBase”, your data is still stored in /tmp/. In this walk-through, we store your data in HDFS instead, assuming
you have HDFS available. You can skip the HDFS configuration to continue storing your data in the local
filesystem.

Hadoop Configuration

This procedure assumes that you have configured Hadoop and HDFS on your local system and or a
remote system, and that they are running and available. It also assumes you are using Hadoop 2.
Currently, the documentation on the Hadoop website does not include a quick start for Hadoop 2,
but the guide at http://www.alexjf.net/blog/distributed-systems/hadoop-yarn-installation-
definitive-guide is a good starting point.

Stop HBase if it is running.

If you have just finished Section 1.2, “Quick Start - Standalone HBase” and HBase is still running, stop it.
This procedure will create a totally new directory where HBase will store its data, so any databases you
created before will be lost.

1.

Configure HBase.

Edit the hbase-site.xml configuration. First, add the following properties. Property hbase.cluster.distributed is
set to true (Its default is false), which directs HBase to run in distributed mode, with one JVM instance per
daemon. Since HBase version 1.0.0, a HMaster is also a RegionServer. So in pseudo-distributed mode, just
one HMaster (also a RegionServer) instance is started by default. Because there is just one RegionServer
(the HMaster), property hbase.master.wait.on.regionservers.mintostart should be set to 1 (Its default is changed
to 2 since version 1.0.0).

<property>
 <name>hbase.cluster.distributed</name>
 <value>true</value>
</property>
<property>
 <name>hbase.master.wait.on.regionservers.mintostart</name>
 <value>1</value>
</property>

Next, change the hbase.rootdir from the local filesystem to the address of your HDFS instance, using the
hdfs://// URI syntax. In this example, HDFS is running on the localhost at port 8020.

<property>
 <name>hbase.rootdir</name>
 <value>hdfs://localhost:8020/hbase</value>
</property>

2.

1.2. Quick Start - Standalone HBase http://hbase.apache.org/book/quickstart.html

4 of 9 17-09-2014 21:58

You do not need to create the directory in HDFS. HBase will do this for you. If you create the directory,
HBase will attempt to do a migration, which is not what you want.

Start HBase.

Use the bin/start-hbase.sh command to start HBase. If your system is configured correctly, the jps command
should show the HMaster and HRegionServer processes running.

3.

Check the HBase directory in HDFS.

If everything worked correctly, HBase created its directory in HDFS. In the configuration above, it is
stored in /hbase/ on HDFS. You can use the hadoop fs command in Hadoop's bin/ directory to list this
directory.

$./bin/hadoop fs -ls /hbase
Found 7 items
drwxr-xr-x - hbase users 0 2014-06-25 18:58 /hbase/.tmp
drwxr-xr-x - hbase users 0 2014-06-25 21:49 /hbase/WALs
drwxr-xr-x - hbase users 0 2014-06-25 18:48 /hbase/corrupt
drwxr-xr-x - hbase users 0 2014-06-25 18:58 /hbase/data
-rw-r--r-- 3 hbase users 42 2014-06-25 18:41 /hbase/hbase.id
-rw-r--r-- 3 hbase users 7 2014-06-25 18:41 /hbase/hbase.version
drwxr-xr-x - hbase users 0 2014-06-25 21:49 /hbase/oldWALs

4.

Create a table and populate it with data.

You can use the HBase Shell to create a table, populate it with data, scan and get values from it, using the
same procedure as in Procedure 1.2, “Use HBase For the First Time”.

5.

Start and stop a backup HBase Master (HMaster) server.

Note

Running multiple HMaster instances on the same hardware does not make sense in a
production environment, in the same way that running a pseudo-distributed cluster does not
make sense for production. This step is offered for testing and learning purposes only.

The HMaster server controls the HBase cluster. You can start up to 9 backup HMaster servers, which
makes 10 total HMasters, counting the primary. To start a backup HMaster, use the local-master-
backup.sh. For each backup master you want to start, add a parameter representing the port offset for
that master. Each HMaster uses three ports (16010, 16020, and 16030 by default). The port offset is
added to these ports, so using an offset of 2, the backup HMaster would use ports 16012, 16022, and
16032. The following command starts 3 backup servers using ports 16012/16022/16032, 16013/16023
/16033, and 16015/16025/16035.

$./bin/local-master-backup.sh 2 3 5

To kill a backup master without killing the entire cluster, you need to find its process ID (PID). The PID is
stored in a file with a name like /tmp/hbase-USER-X-master.pid. The only contents of the file are the PID. You can
use the kill -9 command to kill that PID. The following command will kill the master with port offset 1, but
leave the cluster running:

$ cat /tmp/hbase-testuser-1-master.pid |xargs kill -9

6.

Start and stop additional RegionServers

The HRegionServer manages the data in its StoreFiles as directed by the HMaster. Generally, one
HRegionServer runs per node in the cluster. Running multiple HRegionServers on the same system can be
useful for testing in pseudo-distributed mode. The local-regionservers.sh command allows you to run
multiple RegionServers. It works in a similar way to the local-master-backup.sh command, in that each
parameter you provide represents the port offset for an instance. Each RegionServer requires two ports,
and the default ports are 16020 and 16030. However, the base ports for additional RegionServers are not
the default ports since the default ports are used by the HMaster, which is also a RegionServer since
HBase version 1.0.0. The base ports are 16200 and 16300 instead. You can run 99 additional
RegionServers that are not a HMaster or backup HMaster, on a server. The following command starts four
additional RegionServers, running on sequential ports starting at 16202/16302 (base ports 16200/16300
plus 2).

7.

1.2. Quick Start - Standalone HBase http://hbase.apache.org/book/quickstart.html

5 of 9 17-09-2014 21:58

$.bin/local-regionservers.sh start 2 3 4 5

To stop a RegionServer manually, use the local-regionservers.sh command with the stop parameter and
the offset of the server to stop.

$.bin/local-regionservers.sh stop 3

Stop HBase.

You can stop HBase the same way as in the Section 1.2, “Quick Start - Standalone HBase” procedure,
using the bin/stop-hbase.sh command.

8.

1.2.4. Advanced - Fully Distributed

In reality, you need a fully-distributed configuration to fully test HBase and to use it in real-world scenarios. In
a distributed configuration, the cluster contains multiple nodes, each of which runs one or more HBase
daemon. These include primary and backup Master instances, multiple Zookeeper nodes, and multiple
RegionServer nodes.

This advanced quickstart adds two more nodes to your cluster. The architecture will be as follows:

Table 1.1. Distributed Cluster Demo Architecture

Node Name Master ZooKeeper RegionServer

node-a.example.com yes yes no

node-b.example.com backup yes yes

node-c.example.com no yes yes

This quickstart assumes that each node is a virtual machine and that they are all on the same network. It builds
upon the previous quickstart, Section 1.2.3, “Intermediate - Pseudo-Distributed Local Install”, assuming that
the system you configured in that procedure is now node-a. Stop HBase on node-a before continuing.

Note

Be sure that all the nodes have full access to communicate, and that no firewall rules are in place
which could prevent them from talking to each other. If you see any errors like no route to host,
check your firewall.

Procedure 1.4. Configure Password-Less SSH Access

node-a needs to be able to log into node-b and node-c (and to itself) in order to start the daemons. The easiest way
to accomplish this is to use the same username on all hosts, and configure password-less SSH login from node-a
to each of the others.

On node-a, generate a key pair.

While logged in as the user who will run HBase, generate a SSH key pair, using the following command:

$ ssh-keygen -t rsa

If the command succeeds, the location of the key pair is printed to standard output. The default name of
the public key is id_rsa.pub.

1.

Create the directory that will hold the shared keys on the other nodes.

On node-b and node-c, log in as the HBase user and create a .ssh/ directory in the user's home directory, if it
does not already exist. If it already exists, be aware that it may already contain other keys.

2.

Copy the public key to the other nodes.

Securely copy the public key from node-a to each of the nodes, by using the scp or some other secure
means. On each of the other nodes, create a new file called .ssh/authorized_keys if it does not already exist,
and append the contents of the id_rsa.pub file to the end of it. Note that you also need to do this for node-a
itself.

$ cat id_rsa.pub >> ~/.ssh/authorized_keys

3.

Test password-less login.4.

1.2. Quick Start - Standalone HBase http://hbase.apache.org/book/quickstart.html

6 of 9 17-09-2014 21:58

If you performed the procedure correctly, if you SSH from node-a to either of the other nodes, using the
same username, you should not be prompted for a password.

Since node-b will run a backup Master, repeat the procedure above, substituting node-b everywhere you see
node-a. Be sure not to overwrite your existing .ssh/authorized_keys files, but concatenate the new key onto the
existing file using the >> operator rather than the > operator.

5.

Procedure 1.5. Prepare node-a

node-a will run your primary master and ZooKeeper processes, but no RegionServers.

Stop the RegionServer from starting on node-a.

Edit conf/regionservers and remove the line which contains localhost. Add lines with the hostnames or IP
addresses for node-b and node-c. Even if you did want to run a RegionServer on node-a, you should refer to it
by the hostname the other servers would use to communicate with it. In this case, that would be
node-a.example.com. This enables you to distribute the configuration to each node of your cluster any
hostname conflicts. Save the file.

1.

Configure HBase to use node-b as a backup master.

Create a new file in conf/ called backup-masters, and add a new line to it with the hostname for node-b. In this
demonstration, the hostname is node-b.example.com.

2.

Configure ZooKeeper

In reality, you should carefully consider your ZooKeeper configuration. You can find out more about
configuring ZooKeeper in Chapter 20, ZooKeeper. This configuration will direct HBase to start and
manage a ZooKeeper instance on each node of the cluster.

On node-a, edit conf/hbase-site.xml and add the following properties.

<property>
 <name>hbase.zookeeper.quorum</name>
 <value>node-a.example.com,node-b.example.com,node-c.example.com</value>
</property>
<property>
 <name>hbase.zookeeper.property.dataDir</name>
 <value>/usr/local/zookeeper</value>
</property>

3.

Everywhere in your configuration that you have referred to node-a as localhost, change the reference to
point to the hostname that the other nodes will use to refer to node-a. In these examples, the hostname is
node-a.example.com.

4.

Procedure 1.6. Prepare node-b and node-c

node-b will run a backup master server and a ZooKeeper instance.

Download and unpack HBase.

Download and unpack HBase to node-b, just as you did for the standalone and pseudo-distributed
quickstarts.

1.

Copy the configuration files from node-a to node-b.and node-c.

Each node of your cluster needs to have the same configuration information. Copy the contents of the conf/
directory to the conf/ directory on node-b and node-c.

2.

Procedure 1.7. Start and Test Your Cluster

Be sure HBase is not running on any node.

If you forgot to stop HBase from previous testing, you will have errors. Check to see whether HBase is
running on any of your nodes by using the jps command. Look for the processes HMaster, HRegionServer, and
HQuorumPeer. If they exist, kill them.

1.

Start the cluster.

On node-a, issue the start-hbase.sh command. Your output will be similar to that below.

$ bin/start-hbase.sh
node-c.example.com: starting zookeeper, logging to /home/hbuser/hbase-0.98.3-hadoop2/bin/../logs/hbase-hbuser-zookeeper-node-c.example.com.

2.

1.2. Quick Start - Standalone HBase http://hbase.apache.org/book/quickstart.html

7 of 9 17-09-2014 21:58

node-a.example.com: starting zookeeper, logging to /home/hbuser/hbase-0.98.3-hadoop2/bin/../logs/hbase-hbuser-zookeeper-node-a.example.com.
node-b.example.com: starting zookeeper, logging to /home/hbuser/hbase-0.98.3-hadoop2/bin/../logs/hbase-hbuser-zookeeper-node-b.example.com.
starting master, logging to /home/hbuser/hbase-0.98.3-hadoop2/bin/../logs/hbase-hbuser-master-node-a.example.com.out
node-c.example.com: starting regionserver, logging to /home/hbuser/hbase-0.98.3-hadoop2/bin/../logs/hbase-hbuser-regionserver-node-c.exampl
node-b.example.com: starting regionserver, logging to /home/hbuser/hbase-0.98.3-hadoop2/bin/../logs/hbase-hbuser-regionserver-node-b.exampl
node-b.example.com: starting master, logging to /home/hbuser/hbase-0.98.3-hadoop2/bin/../logs/hbase-hbuser-master-nodeb.example.com.out

ZooKeeper starts first, followed by the master, then the RegionServers, and finally the backup masters.

Verify that the processes are running.

On each node of the cluster, run the jps command and verify that the correct processes are running on
each server. You may see additional Java processes running on your servers as well, if they are used for
other purposes.

Example 1.3. node-a jps Output

$ jps
20355 Jps
20071 HQuorumPeer
20137 HMaster

Example 1.4. node-b jps Output

$ jps
15930 HRegionServer
16194 Jps
15838 HQuorumPeer
16010 HMaster

Example 1.5. node-c jps Output

$ jps
13901 Jps
13639 HQuorumPeer
13737 HRegionServer

ZooKeeper Process Name

The HQuorumPeer process is a ZooKeeper instance which is controlled and started by HBase. If
you use ZooKeeper this way, it is limited to one instance per cluster node, , and is appropriate
for testing only. If ZooKeeper is run outside of HBase, the process is called QuorumPeer. For more
about ZooKeeper configuration, including using an external ZooKeeper instance with HBase,
see Chapter 20, ZooKeeper.

3.

Browse to the Web UI.

Web UI Port Changes

In HBase newer than 0.98.x, the HTTP ports used by the HBase Web UI changed from 60010
for the Master and 60030 for each RegionServer to 16610 for the Master and 16030 for the
RegionServer.

If everything is set up correctly, you should be able to connect to the UI for the Master http://node-
a.example.com:60110/ or the secondary master at http://node-b.example.com:60110/ for the secondary master, using
a web browser. If you can connect via localhost but not from another host, check your firewall rules. You
can see the web UI for each of the RegionServers at port 60130 of their IP addresses, or by clicking their
links in the web UI for the Master.

4.

Test what happens when nodes or services disappear.

With a three-node cluster like you have configured, things will not be very resilient. Still, you can test
what happens when the primary Master or a RegionServer disappears, by killing the processes and
watching the logs.

5.

1.2. Quick Start - Standalone HBase http://hbase.apache.org/book/quickstart.html

8 of 9 17-09-2014 21:58

1.2.5. Where to go next

The next chapter, Chapter 2, Apache HBase Configuration, gives more information about the different HBase
run modes, system requirements for running HBase, and critical configuration areas for setting up a
distributed HBase cluster.

0 Comments Apache HBase Login

Sort by Best Share⤤

Start the discussion…

Subscribe✉ Add Disqus to your sited

Favorite★

Prev Up Next

Chapter 1. Getting Started Home Chapter 2. Apache HBase Configuration

1.2. Quick Start - Standalone HBase http://hbase.apache.org/book/quickstart.html

9 of 9 17-09-2014 21:58

