Getting Data from the Web with R
Part 2: Reading Files from the Web

Gaston Sanchez
April-May 2014

Content licensed under CC BY-NC-SA 4.0

http://creativecommons.org/licenses/by-nc-sa/4.0/

License:

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
http://creativecommons.org/licenses/by-nc-sa/4.0/

You are free to:

Share — copy and redistribute the material

Adapt — rebuild and transform the material

Under the following conditions:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made.
NonCommercial — You may not use this work for commercial purposes.
Share Alike — If you remix, transform, or build upon this work, you must distribute your contributions under

the same license to this one.

http://creativecommons.org/licenses/by-nc-sa/4.0/

Lectures Menu

Slide Decks

1.

OOl R O = CORIND

Introduction

Reading files from the Web

Basics of XML and HTML

Parsing XML / HTML content
Handling JSON data

HTTP Basics and the RCurl Package
Getting data via Web Forms

Getting data via Web APls

gastonsanchez.com Getting data from the web with R CC BY-SA-NC 4.0

4 /72

Reading Files
from the Web

Getting data from the web with R CC BY-SA-NC 4.0 5/ 72

€ C [1) wwwgutenbers org/eo0oks 2701 txtutf-8

o

e Project Gutenbers EBook of Moby Dick; or The Whale, by Herman Melville

This eBook is for the use of anyone anywhere at no cost and with
alnost o restrictions whatsoever.
zo-use it under the terms of the Project Gutenberg License included

You ma:

y copy it,

with this eBook or online at www.gutenberg.org

Title: Moby Dick; or The Whale
Author: Herman Melville
Last Updated: January 3, 2

Posting Date
Release Date: June, 2001

Language: English

4+ START OF THIS PROJECT GUTENBERG ZBOOK YOBY DICK;

Produced by Daniel Lazarus and Jonesey

cla

009
December 25, 2008 [EBook #2701

cars2004

| o

Se T s wm. am

Moce!

Givoon G2 11 Base
it Coupe

Merosses Cisssa C 200 COI
o 5300 =
Jeguar SType27 Ve BiTube 2720
Mercades Ciasse S 400 GO 356
Givoen C3 Pl I
wze2s

AT 18T 180
ston Mot Vanauen

Fie Eat View st Format Osta Toos

He

c
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2
4.9,3.1,1.5,0.1
5.4,3.7,1.5,0.2
4.8,3.4,1.6,0.2
4.8,3.0,1.4,0.1
4.3,3.0,1.1,0.1
5.8,4.0,1.2,0.2
5.7,4.4,1.5,0.4

H

,Iris-setosa
ris-setosa
ris-setosa
ris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa
,Iris-setosa

HHH

W World record progression

[en.wikipedia.org/wiki/World_record_progression_1500_... &Ll Q ¢ &

= orion
o
o,

2 | 22000 George Hodgson |l Canada Jul 10,112 |Olympic Games| Stockholm,
‘Sweden

weden |Jul8, 1923 |- (Gothenburg,
‘Sweden
& Sydney.
Australia

21353 || Ame Borg

21:15.0 || Ame Borg weden | Jan 30,1924 -

21:11.4 || Ame Borg

From the web to R

The goal of these slides is to show you different ways
to read (data) files from the Web into R

In a nutshell

We'll cover a variety of situations you most likely will
find yourself dealing with:

>

>

>

reading raw (plain) text
reading tabular (spreadsheet-like) data
reading structured data (xml, html) as text

reading R scripts and Rdata files

v

v

v

v

v

R Data Import / Export Manual
Data Manipulation with R

R Programming for Bioinformatics
The Art of R Programming

XML and Web Technlogies for Data Sciences with R

Keep in mind
All the material described in this presentation relies on
3 key assumptions:

» we know where the data is located

» we know how the data is stored (i.e. type of file)

> all we want is to import the data in R

Reading Files
from the Web

Getting data from the web with R CC BY-SA-NC 4.0 11 /72

806 (R Data Import/Export x

&« C' [cran.r-project.org/doc/manuals/r-release/R-data.html ks

o)

R Data Import/Export

This is a guide to importing and exporting data to and from R.
This manual is for R, version 3.1.0 (2014-04-10).
Copyright © 2000-2013 R Core Team

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided that the entire resulting derived work is distributed under the terms
of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that this permission notice may be stated
in a translation approved by the R Core Team.

* Acknowledgements:

« Introduction:

« Spreadsheet-like data:

« Importing from other statistical systems:
* Relational databases:

* Binary files:

* Image files:

» Connections:

* Network interfaces:

« Reading Excel spreadsheets:
 References:

« Function and variable index:

R Data Import / Export Manual
This is the authoritative source of information to read and learn
almost all about importing —and exporting— data in R:

» html version

http://cran.r-project.org/doc/manuals/r-release/R-data.html

> pdf version
http://cran.r-project.org/doc/manuals/r-release/R-data.pdf

Good news:

Bad news:

http://cran.r-project.org/doc/manuals/r-release/R-data.html
http://cran.r-project.org/doc/manuals/r-release/R-data.pdf

R is equipped with a set of handy functions that allow us to read a
wide range of data files

The trick to use those functions depends on the format of the data
we want to read, and the way R handles the imported values:

» what type of objets
» what kind of modes

Fundamentals

Let's start with the basic reading
functions and some R technicalities

» scan()
» readLines()

» connections

connections

scan(s readLines?)

read.table()
read.csv() read.fwf ()

read.delim()

The primary functions to read files in R are scan() and
readLines ()

readLines () is the workhorse function to read raw text in R
as character strings

scan() is a low-level function for reading data values, and it is
extended by read.table() and its related functions

When reading files, there's the special concept under the hood
called R connections

Both scan() and readLines() take a connection as input

R connections?
Connection is the term used in R to define a mechanism for
handling input (reading) and output (writing) operations.

What do they do?

A connection is just an object that tells R to be prepared for
opening a data source (eg file in local directory, or a file url)
See the full help documentation with: 7connections

Functions to create connections

Function Input

file() path to the file to be opened or complete URL
url() a complete URL

gzfile() path to a file compressed by gzip

bzfile() path to a file compressed by bzip2

xzfile() path to a file compressed by xz

unz () path to the zip file with .zip extension

pipe O command line to be piped to or from

fifo() path of the fifo

By default, creating a connection does not open the connection. But they may

be opened with the argument open

Usefulness

Connections provide a means to have more control over the way
R will “comunicate” with the resources to be read (or written).

Keep in mind

Most of the times you don't need to use or worry about connections.
However, you should know that they can play an important role
behind the built-in fuctions to read data in R.

file()
The most commonly used connection is file (), which is used by

most reading functions (to open a local file for reading or writing
data).

url ()

Because we're interested in getting data from the web, the one
connection that becomes a protagonist is the url () connection.

Using url1 ()

url(description, open = "", blocking = TRUE,
encoding = getOption("encoding"))

The main input for url() is the description which has to be a
complete URL, including scheme such as http://, ftp://, or
file://

For instance, let's create a connection to the R homepage:

creating a url connection to the R homepage
r_home = url("http://www.r-project.org/")

what's in r_home

r_home

description class
"http://www.r-project.org/" "url"
mode text
i npn [Ip—
opened can read
"closed" "yes"
can write

i o'

is open?
isOpen(r_home)

[1] FALSE

Note that we are just defining a connection. By default, the connection does not open

anything

Should we care?
» Again, most of the times we don't need to explicitly use url ().
» Connections can be used anywhere a file name could be passed
to functions like scan() or read.table().

> Usually, the reading functions —eg readLines (),
read.table(), read.csv()— will take care of the URL
connection for us.

» However, there may be occassions in which we will need to
specify a url () connection.

gastonsanchez.com

Reading Text

Getting data from the web with R

CC BY-SA-NC 4.0

25/

Reading Text Files As Text

In this section we'll talk about reading text files with
the purpose of importing their contents as raw text (ie
character strings) in R.

“In computer literature, there is often a distinction
made between text files and binary files. That distinction
is somewhat misleading —every file is binary in the sense
that it consists of Os and 1s. Let’s take the term text files
to mean a file that consists mainly of ASCII characters ...
and that uses newline characters to give the humans the
perception of lines.”

Norman Matloff (2011)

Some considerations so we can all be on the same page:
> By text files we mean plain text files

> Plain text as an umbrella term for any file that is in a
human-readable form

v

Text files stored as a sequence of characters

Each character stored as a single byte of data

v

Data is arranged in rows, with several values stored on each row

v

Text files that can be read and manipulated with a text editor

v

Functions for reading text
» readLines () is the main function to read text files as raw text
in R
» scan() is another function that can be used to read text files.
It is more generic and low-level but we can specify some of its
parameters to import content as text

Function readLines ()

» readLines () is the workhorse function to read text files as raw
text in R

» The main input is the file to be read, either specified with a
connection or with the file name

» readlLines () treats each line as a string, and it returns a
character vector

> The output vector will contain as many elements as number of
lines in the read file

Using readLines ()

readLines(con = stdin(), n = -1L, ok = TRUE,
warn = TRUE, encoding = "unknown")

» con a connection, which in our case will be a complete URL
» n the number of lines to read

» ok whether to reach the end of the connection

» warn warning if there is no End-Of-Line

> encoding types of encoding for input strings

Project Gutenberg

A great collection of texts are available from the Project
Gutenberg which has a catalog of more than 25,000 free online
books:

http://www.gutenberg.org

Moby Dick

Let’s consider the famous novel Moby Dick by Herman Melville. A
plain text file of Moby Dick can be found at:
http://www.gutenberg.org/ebooks/2701.txt.utf-8

http://www.gutenberg.org
http://www.gutenberg.org/ebooks/2701.txt.utf-8

&« C [} www.gutenberg.org/ebooks /2701 txt.utf-8 i @

The Project Gutenberg EBook of Moby Dick; or The Whale, by Herman Melville
This eBook is for the use of anyone anywhere at no cost and with

almost no restrictions whatsoever. You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included

with this eBook or online at www.gutenberg.org

Title: Moby Dick; or The Whale

Author: Herman Melville

Last Updated: January 3, 2009

Posting Date: December 25, 2008 [EBook #2701)

Release Date: June, 2001

Language: English

*** START OF THIS PROJECT GUTENBERG EBOOK MOBY DICK; OR THE WHALE ***

Produced by Daniel Lazarus and Jonesey

http://www.gutenberg.org/ebooks/2701.txt.utf-8

Here's how you could read the first 500 lines of cotent with
readLines ()

url of Moby Dick (project Gutenberg)
moby_url = url("http://www.gutenberg.org/ebooks/2701.txt.utf-8")

reading the content (first 500 lines)
moby_dick = readLines(moby_url, n = 500)

first five lines
moby_dick[1:5]

[1] "The Project Gutenberg EBook of Moby Dick; or The Whale, by Herman Melville"
[2] "

[3] "This eBook is for the use of anyone anywhere at no cost and with"

[4] "almost no restrictions whatsoever. You may copy it, give it away or"

[5] "re-use it under the terms of the Project Gutenberg License included"

Note that each line read is stored as an element in the character vector

moby_dick

Terms of Service

Some times, reading data directly from a website may be against the
terms of use of the site.

Web Politeness

When you're reading (and “playing” with) content from a web page,
make a local copy as a courtesy to the owner of the web site so you
don't overload their server by constantly rereading the page. To
make a copy from inside of R, look at the download.file()
function.

Downloading

It is good advice to download a copy of the file to your computer,
and then play with it.

Let's use download.file() to save a copy in our working directory.
In this case we create the file mobydick.txt
download a copy in the working directory

download.file("http://www.gutenberg.org/cache/epub/2701/pg2701.txt",
"mobydick.txt")

Function scan()

Another very useful function that we can use to read text is scan().
By default, scan() expects to read numeric values, but we can
change this behavior with the argument what

scan(file = "", what = double(), nmax = -1, n = -1, sep = "",
quote = if(identical(sep, "\n")) "" else "'\"", dec = ".",
skip = 0, nlines = 0, na.strings = "NA",

flush = FALSE, fill = FALSE, strip.white = FALSE,

quiet = FALSE, blank.lines.skip = TRUE, multi.line = TRUE,
comment.char = "", allowEscapes = FALSE,

fileEncoding = "", encoding = "unknown", text)

Some scan() arguments

>

>

>

file the file name or a connection

what type of data to be read

n maximum number of data values to read

sep type of separator

skip number of lines to skip before reading values

nlines maximum number of lines to be read

Chapter 1 starting at line 536.
How do we get the first lines of that chapter?

< >[5 moby dickta *

And King of the boundless sea.”
--WHALE SONG.

CHAPTER 1. Loomings.

Call me Ishmael. Some years ago--never mind how long precisely--having
little or no money in my purse, and nothing particular to interest me on
shore, I thought I would sail about a little and see the watery part of
the world. It is a way I have of driving off the spleen and regulating
the circulation. Whenever I find myself growing grim about the mouth;
whenever it is a damp, drizzly November in my soul; whenever I find
myself involuntarily pausing before coffin warehouses, and bringing up
the rear of every funeral I meet; and especially whenever my hypos get
such an upper hand of me, that it requires a strong moral principle to
prevent me from deliberately stepping into the street, and methodically
knocking people's hats off--then, I account it high time to get to sea
as soon as I can. This is my substitute for pistol and ball. With a
philosophical flourish Cato throws himself upon his sword; I quietly
take to the ship. There is nothing surprising in this. If they but knew
it, almost all men in their degree, some time or other, cherish very
nearly the same feelings towards the ocean with me.

Let's make it more interesting

If we want to read just a pre-specified number of lines, we have to
loop over the file lines and read the content with scan(). For
instance, let's skip the first 535 lines, and then read the following 10
lines of Chapter 1

empty vector to store results
moby_dick_chapl = rep("", 10)

number of lines to skip until Chapter 1
skip = 535

reading 10 lines (line-by-line using scan)
for (i in 1L:10) {

one_line = scan("mobydick.txt", what = "", skip = skip, nlines = 1)
pasting the contents in one_line

moby_dick_chapl[i] = paste(one_line, collapse = " ")

skip = skip + 1

}

Note that we are using paste() to join (collapse) all the scanned values in one_line

lines

536-545

moby_dick_chapl

##
##
##
##
##
##
##
##
##
##

[11
[2]
[31
[4]
[5]1
el
[71
[8l
[9]
[10]

"CHAPTER 1. Loomings."

"

wn

"Call me Ishmael. Some years ago--never mind how long precisely--having"
"little or no money in my purse, and nothing particular to interest me on"
"shore, I thought I would sail about a little and see the watery part of"
"the world. It is a way I have of driving off the spleen and regulating"
"the circulation. Whenever I find myself growing grim about the mouth;"
"whenever it is a damp, drizzly November in my soul; whenever I find"
"myself involuntarily pausing before coffin warehouses, and bringing up"

HTML File

Our third example involves reading the contents of an html file.
We're just illustrating how to import html content as raw text in R.

Egyptian Skulls

Let's consider the file containing information about the Egyptian
Skulls data set by Thomson et al:
http://1ib.stat.cmu.edu/DASL/Datafiles/EgyptianSkulls.html

http://lib.stat.cmu.edu/DASL/Datafiles/EgyptianSkulls.html

€ = C [lib.stat.cmu.edu/DASL/Datafiles/EgyptianSkulls.html W 4 @ =

Datafile Name: Egyptian Skulls

Datafile Subjects: Archeology , Biology

Story Names: Egyptian Skull Development

Reference: Thomson, A. and Randall-Maciver, R. (1905) Ancient Races of the Thebaid, Oxford: Oxford University Press.
Also found in: Hand, D.J., er al. (1994) A Handbook of Small Data Sets, New York: Chapman & Hall, pp. 299-301. Manly,
B F.J.(1986) Multivariate Staistical Methods, New York: Chapman & Hall.

Authorization: Contact Authors

Description: Four measurements of male Egyptian skulls from 5 different time periods. Thirty skulls are measured from
«each time period.

Number of cases: 150
‘Variable Names:

1. MB: Maximal Breadth of Skull

2. BH: Basibregmatic Height of Skull

3. BL: Basialveolar Length of Skull

4. NH: Nasal Height of Skull

5. Year: Approximate Year of Skull Formation (negative = B.C., positive = A.D.)

The Data:

MB BE BL NH Year
131 138 89 49 -4000
125 131 92 48 -4000
131 132 99 50 -4000
119 132 96 a4 -4000
136 143 100 54 -4000

138 137 89 56 -4000

http://lib.stat.cmu.edu/DASL/Datafiles/EgyptianSkulls.html

To read the html content we use readLines ()

read html file content as a string vector
skulls

readLines("http://1lib.stat.cmu.edu/DASL/Datafiles/EgyptianSkulls.html")

head(skulls, n = 10)

##
##
##
##
##
##
##
##
##
##

[1]
[2]
[31
[4]
[5]
(6]
[71
[8]
[o]
[10]

"<TITLE>Egyptian Skulls Datafile</TITLE>"

"<hr size=2><center><table border=1 cellpadding=0 cellspacing=0><tr><td align=center><table border:
"<DT>Datafile Name: Egyptian Skulls"
"<DT>Datafile Subjects: <dsubjects>"
"Ar

woon
B

wn

"Biolo

Reading Tabular Data

gastonsanchez.com Getting data from the web with R CC BY-SA-NC 4.0 46 / 72

Tables

R is great for reading data in tabular format.

Tabular data, also known as rectangular data, are typically text files

The conventional form is data values that can be seen as an array of
rows and columns

Two main formats
> delimited formats

» fixed-width formats

Delimited

In a delimited format, values within a row are separated by a special
character, or delimiter.

Fixed-Width
In a fixed-width format, each value is allocated a fixed number of
characters within every row.

Imagine we have some tabular data

Name Gender Homeland Born Jedi
Anakin male Tatooine 41.9BBY vyes
Amidala female Naboo 46BBY no
Luke male Tatooine 19BBY yes
Leia female Alderaan 19BBY no
Obi-Wan male Stewjon 57BBY yes
Han male Corellia 290BBY no
Palpatine male Naboo 82BBY no
R2-D2 unknown Naboo 33BBY no

space delimited

Name Gender Homeworld Born Jedi
Anakin male Tatooine 41.9BBY yes
Amidala female Naboo 46BBY no
Luke male Tatooine 19BBY yes
Leia female Alderaan 19BBY no
Obi-Wan male Stewjon 57BBY yes
Han male Corellia 29BBY no
Palpatine male Naboo 82BBY no
R2-D2 unknown Naboo 33BBY no

comma delimited

Name,Gender ,Homeworld,Born, Jedi
Anakin,male,Tatooine,41.9BBY,yes
Amidala,female,Naboo,46BBY,no
Luke,male,Tatooine, 19BBY,yes
Leia,female,Alderaan,19BBY,no
Obi-Wan,male,Stewjon,57BBY,yes
Han,male,Corellia,29BBY,no
Palpatine,male,Naboo,82BBY,no
R2-D2,unknown,Naboo,33BBY,no

tab delimited

Name Gender Homeworld Born Jedi
Anakin male Tatooine 41.9BBY yes
Amidala female Naboo 46BBY no

Luke male Tatooine 19BBY yes
Leia female Alderaan 19BBY no
Obi-Wan male Stewjon 57BBY yes

Han male Corellia 29BBY no
Palpatine male Naboo 82BBY no
R2-D2 unknown Naboo 33BBY no

Fixed width

Name Gender Homeworld Born
Anakin male Tatooine 41.9BBY
Amidala female Naboo 46BBY
Luke male Tatooine 19BBY
Leia female Alderaan 19BBY
Obi-Wan male Stewjon 57BBY
Han male Corellia 29BBY
Palpatine male Naboo 82BBY
R2-D2 unknown Naboo 33BBY

Jedi

Main functions

>

>

| 2

scan() reads data values (one by one)
read.table () main function for reading tabular data

read.csv () convenient wraper of read.table() designed for
reading comma separated values (CSV) files

read.delim() wrapper of read.table() for any delimited file
format

read.fwf () designed for reading files with fixed width
separated values

Example from The R Book by Michael Crawley

€ - C [www.bio.icac.uk/research/mjcraw/therbook/data/ Qv

localhost - /research/mjcraw/therbook/data/

To Parent Directory

Tuesday, December 27, 2005 11:44 AM 97 a.txt
saturday, April 20, 2002 10:09 AM 490 Ancovacontrasts.txt
Saturday, April 20, 2002 10:08 AM 79

Sunday, March 12, 2006 2:46 PM 3225 aplam.txt
saturday, April 20, 2002 10:12 AM 1244 asymptotic.txt

Tuesday, December 27, 2005 11:44 AM 99
Friday, November 25, 2005 5:24 PM 2744
Friday, November 25, 2005 5:16 PM 180
Friday, November 25, 2005 11:47 AM 180

Thursday, November 24, 2005 5:11 PM 180

Saturday, November 26, 2005 9:47 AM 180
Friday, November 25, 2005 10:15 AM 180
Friday, November 25, 2005 3:28 PM 180

Thursday, November 24, 2005 1:15 PM 180

Tuesday, January 17, 2006 2:58 PM 17997 berks.txt
saturday, April 20, 2002 10:12 AM 68 bioassay.txt
Friday, January 19, 2007 8:45 AM 30066
saturday, April 20, 2002 10:13 AM 2108 blowfly.txt
Sunday, January 11, 2004 1:39 PM 14398 bowens.csv
Sunday, January 01, 2006 12:14 PM 1899 box.txt
Sunday, January 01, 2006 12:11 PM 1584 boxy.txt
Sunday, February 13, 2005 11:25 AM 377 bubble.txt

Tuesday, December 27, 2005 11:45 AM 100 c.txt

http://www.bio.ic.ac.uk/research/mjcraw/therbook/

Taxon Data (from The R Book)

&« C' [www.bio.ic.ac.uk/research/mjcraw/therbook/data/taxon.txt

"Petals” "Internode” "Sepal" "Bract" "Petiole" "Leaf" "Fruit"

"1l" 5.621498349
"2" 4.994616997
"3" 4.767504B84
"4" 6.299445616
"5" 6.489375001

4.444226444
5.381B88649
4.162398141
6.546125565
5.133151769

6.872582397
4.265699548
4.069245625
6.695262246
5.804502115
5.649255792
4.975115406
5.242381538
5.063066089
"27" 5.006042848
"28" 5.980790831

29.48059578 2.462106579 18.2034091 11.27909704
28.36024706 2.429320759 17.65204912 11.0408378
27.25431792 2.570497375 19.4083846 10.49072184
25.9242382 2.066051345 18.37915478 11.80182252

1.
1.
1.003808444 7.81747899

1.614051727 7.672492324

128032999 7.876151371
197616585 7.025415554

25.21130B05 2.901582763 17.31304737 10.12159001 1.813333082 7.758443087
"6" 5.7858682 25.52433147 2.655642742 17.07215724 10.5581605 1.955524186 7.8B0B79829

"7" 5.645575295 27.72735671 2.278691288 1B.2902189 10.11689319 1.414356176 7.332124408
"B" 4.82B953215 27.63B1855 2.238467716 19.87376227 10.43071493 1.603331861 7.005136448

25.48653519
28.5300B566
27.23922882
27.73424951
29.33237736

2.918513379
2.931223681
2.759099725
2.329725784
2.44B247009

19.52866206
17.62409776
17.89805071
17.38995746
19.40622249

10.27840842
10.67172405
11.42458281
11.25045634
11.15433346

" 6.783500773 27.88777529 2.202762147 19.85326662 10.47399775 1.533533943 7.656378638
" 5.395076839 25.10904979 2.538375992 19.56545356 11.55456651 1.048182185 7.505930435
4.6B3617783 29.2459239 2.601945544 18.95335451 11.8203702 1.40B570649 7.954125122

1.783670318 7.674149643
1.637521266 7.034974714
1.307677167 7.697990092
1.508787547 7.172021588
1.413823925 7.635342975

6.31750724 2B.54598267 2.445203138 18.14507123 11.13155215 1.376095509 7.914687987

27.36377647 2.551340885 19.37856593 11.39634002 1.845322428 7.362050896
26.9166827 2.930159411 19.52993241 11.87800257 1.122888175 7.913177055
28.00872767 2.306900441 1B.10018898 10.28587666 1.096098375 7.5231B8659
30.98241938 2.280554955 19.58999705 10.01733931 1.993469856 7.447146231
27.60866985 2.541535351 19.99502062 10.71206051 1.078787122 7.634464001
26.0145167 2.630009346 19.73151656 11.56895111 1.97965464 7.2B2278565

29.83647166
29.25618227
30.23405514
27.92346287
27.59682027

2.533115646
2.940088125
2.816805174
2.054945288
2.825002908

17.85816577
1B.68002039
17.11427146
17.89395755
19.19108937

11.09149866
10.03097795
10.65715001
10.29285526
10.55412055

1.399543824 7.469118495
1.131223326 7.424061646
1.955607401 7.920755239
1.231612531 7.948526777
1.877992273 7.692805714

http://www.bio.ic.ac.uk/research/mjcraw/therbook/data/taxon.txt

Let's read the data "taxon"

url of taxon data
taxon_url = "http://www.bio.ic.ac.uk/research/mjcraw/therbook/data/taxon.txt"

import data in R
taxon = read.table(taxon_url, header = TRUE, row.names = 1)

head (taxon)

Petals Internode Sepal Bract Petiole Leaf Fruit

1 5.621 29.48 2.462 18.20 11.28 1.128 7.876
2 4.995 28.36 2.429 17.65 11.04 1.198 7.025
3 4.768 27.25 2.570 19.41 10.49 1.004 7.817
4 6.299 25.92 2.066 18.38 11.80 1.614 7.672
5 6.489 25.21 2.902 17.31 10.12 1.813 7.758
6 5.786 25.52 2.656 17.07 10.56 1.956 7.881

from UCI Machine Learning Repo

Data set

i

C | @ https://archive.ics.uci.edu/ml/machine-learning-databases...

&«

Iris-setosa
Iris-setosa

5,1.4,0.2,
.0,1.4,0.2,
.7,3.2,1.3,0.2,Iris-setosa

.6,3.1,1.5,0.2,Iris-setosa

Iris-setosa
Iris-setosa

4,0.2,
. . .7,0.4,
4.6,3.4,1.4,0.3,Iris-setosa

5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.4,3.7,1.5,0.2,Iris-setosa
4.8,3.4,1.6,0.2,Iris~-setosa

Iris-setosa
Iris-setosa

r r

. . .1, ,
5.8,4.0,1.2,0.2,Iris-setosa
5.7,4.4,1.5,0.4,Iris-setosa

’
’

r
r

4.8,3.0,1.4,0.1
4.3,3.0,1.1,0.1

https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
https://archive.ics.uci.edu/ml/datasets.html

How do we read the data?
If you try to simply use read.csv(), you'll be disappointed:

URL of data file
iris_file = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"

this won't work
iris_data = read.csv(iris_file, header = FALSE)

Note that the URL starts with https://, that means a secured
connection. The solution requires some special functions:

» We need to use the R package "RCurl" to make an HTTPS
request with getURL ()

» We also need to use textConnection() inside read.csv()

This is how to successfully read the iris data set in R:

URL of data file

iris_file = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
library(RCurl)

iris_url = getURL(iris_file)
iris_data = read.csv(textConnection(iris_url), header = FALSE)

head(iris_data)

Vi V2 V3 V4 Vs
1 5.1 3.5 1.4 0.2 Iris-setosa
2 4.9 3.0 1.4 0.2 Iris-setosa
3 4.7 3.2 1.3 0.2 Iris-setosa
4 4.6 3.1 1.5 0.2 Iris-setosa
5 5.0 3.6 1.4 0.2 Iris-setosa
6 5.4 3.9 1.7 0.4 Iris-setosa

Excel file
Example from Data Mining Course by Lluis Belanche

€ & C [wwwlsiupced / html

[Materials for the practical work

The first and second practical works use the ALPHA data set and consists on three steps:

1. statistical analysis, visualization and profiling
2. cluster analysis
3. association analysis

« ALPHA data
+ Document

The third practical work uses a real-world data set of your choice and consists on three steps:
1. statstical analysis and pre-processing
2. feature selection andlor extraction
3. modeling and prediction

« Data sets

+ Document

We'll read the excel file named alpha.xls available at:

http://www.lsi.upc.edu/~belanche/Docencia/mineria/mineria.html
alpha_xls = "http://www.lsi.upc.edu/~belanche/Docencia/mineria/Practiques/alpha.xls"

Alpha Data (from Data Mining course)

00 alpha.

Data | Review |

=
[Com—r
Ej

e | B|I[U|(S]]AL

Fant Agnment Number

= [ks | Sowarrea~ oo 1]
L] Merg Sl %[> Formatting _ S¥1es

Format

celis

Actions

Themes Aa~

1[0 0 [fif den

B_| € [D] | —

E F G | H
etal gammal deftal alfal alral est1 beta2

cococcocococcoccocoocoooooooo
co-s0c0000s0c0 00~ 0000
csco-socs00000 s000000000
1000000000000 000
coocoococo-cocoscoooooo0oo000

B e e P P P PP P PP PP

cooocosccococococooocooo000

=
gammaz

coococococcocooccocoo 00000

]
delta2

cossc000o0s0s0s000s0000

K
alfa2

- -200-0-2-2000=00000000==0

i
edat

M
memb

!

G S G S R N ORI 3 R R O Bt G S R A

Tsum=0

<

We need to use the function read.x1s() from the package
llgdatall

load package 'gdata'
library(gdata)

excel file (1st worksheet named "dades")
alpha_xls = "http://www.lsi.upc.edu/ belanche/Docencia/mineria/Practiques/alpha.xls"

Count the number of sheets in excel file, and list sheet names:

how many sheets
sheetCount (alpha_x1s)

[1] 2

names of sheets
sheetNames (alpha_x1s)

[1] "dades" "diccionari"

Since the data set is in the first worksheet we use the argument
sheet = 1:

import sheet 1 (dades) in R
alpha_data = read.xls(alpha_xls, sheet = 1)

head(alpha_data)

iden betal gammal deltal alfal altral estrl beta2 gamma2 delta2 alfa2 edat

1 1 0 0 0 0 1 0 1 0 0 0 40
2 2 0 0 0 0 1 0 0 0 0 1 57
3 3 0 0 0 0 1 0 0 0 0 1 35
4 4 0 0 0 0 1 0 0 1 0 0 54
5 5 0 0 1 0 0 0 0 0 1 0 43
6 6 0 0 1 0 0 0 0 1 0 0 19
memb estd eciv profl prof2 ingr
1 4 12 1 1 0 190
2 2 12 1 1 0 220
3 1 16 0 1 0 220
4 3 14 1 1 0 220
5 5 14 1 0 1 110
6 6 14 0 0 0 220

Example with data in Google Docs Spreadsheet

=

=]

C' | & https://docs.google.com/spreadsheet/ccc?key=0AjoVnZ9iB26 1dHRFQIVuWDRUSHAZQ1A4N294TEstcO

cars2004 ||

File Edt View Insert Format Data Tools Help

&5 o ~ T 5 % 123- Aral - 10

Model

A B c
Modell Cylinders Horsepower

Citroen C2 1.1 Base 1124 61
Smart Fortwo Coupe 698 52
Mini 1.6 170 1598 170
Nissan Micra 1.2 65 1240 65
Renault Clio 3.0 V6 2946 255
Audi A3 1.9 TDI 1896 108
Peugeot 307 1.4 HDI 70 1398 70
Peugeot 407 3.0 V6 BVA 2946 211
Mercedes Classe C 270 CDI 2685 170
BMW 530d 2993 218
Jaguar S-Type 2.7 V6 Bi-Turbo 2720 207
BMW 7451 4398 333
Mercedes Classe S 400 CDI 3966 260
Gitroen C3 Pluriel 1.6i 1587 110
BMW Z4 2.5i 2494 192
Audi TT 1.8T 180 1781 180
Aston Martin Vanquish 5935 460

+ |= | Feul

All changes saved in Drive

- | B

Speed
158
135
218
154

187
160

230
245
230
250
250
185
235
228
306

5 A .

E

Weight
932
730
1215
965
1400
1295
178
1640
1600
1595
1722
1870
1915
177
1260
1280
1835

& - 0 -

width
1659
1515
1690
1660
1810
1765
1748
1811
1728
1846
1818
1802
2092
1700
1781
1764
1923

G
Length

https://docs.google.com/spreadsheet/ccc?key=0AjoVnZ9iB261dHRfQlVuWDRUSHdZQ1A4N294TEstc0E&usp=sharing

To read data from a Google Doc Spreadsheet we need to use the R
package "RCurl" (to connect via a secured HTTP). In addition we
need to know the publick key of the document. Here's how to read
the Cars2004 google doc:

load package RCurl
library(RCurl)

google docs spreadsheets url
google_docs = "https://docs.google.com/spreadsheet/"

public key of data 'cars'
cars_key = "pub?key=0AjoVnZ9iB261dHRfQ1VuWDRUSHAZQ1A4N294TEstcOE&output=csv"

download URL of data file
cars_csv = getURL(paste(google_docs, cars_key, sep = ""))

import data in R (through a text connection)
cars2004 = read.csv(textConnection(cars_csv), row.names = 1, header = TRUE)

cars2004 = read.csv(mycars, row.names = 1, header = TRUE)

Cylinders Horsepower Speed Weight Width Length
Citroen C2 1.1 Base 1124 61 158 932 1659 3666
Smart Fortwo Coupe 698 52 135 730 1515 2500
Mini 1.6 170 1598 170 218 1215 1690 3625
Nissan Micra 1.2 65 1240 65 154 965 1660 3715
Renault Clio 3.0 V6 2946 255 245 1400 1810 3812
Audi A3 1.9 TDI 1896 105 187 1295 1765 4203
Peugeot 307 1.4 HDI 70 1398 70 160 1179 1746 4202
Peugeot 407 3.0 V6 BVA 2946 211 229 1640 1811 4676
Mercedes Classe C 270 CDI 2685 170 230 1600 1728 4528
BMW 530d 2993 218 245 1595 1846 4841
Jaguar S-Type 2.7 V6 Bi-Turbo 2720 207 230 1722 1818 4905
BMW 7451 4398 333 250 1870 1902 5029
Mercedes Classe S 400 CDI 3966 260 250 1915 2092 5038
Citroen C3 Pluriel 1.6i 1587 110 185 1177 1700 3934
BMW Z4 2.5i 2494 192 235 1260 1781 4091
Audi TT 1.8T 180 1781 180 228 1280 1764 4041
Aston Martin Vanquish 5935 460 306 1835 1923 4665
Bentley Continental GT 5998 560 318 2385 1918 4804
Ferrari Enzo 5998 660 350 1365 2650 4700
Renault Scenic 1.9 dCi 120 1870 120 188 1430 1805 4259
Volkswagen Touran 1.9 TDI 105 1896 105 180 1498 1794 4391
Land Rover Defender Td5 2495 122 135 1695 1790 3883
Land Rover Discovery Td5 2495 138 157 2175 2190 4705

Nissan X-Trail 2.2 dCi 2184 136 180 1520 1765 4455

Wikipedia Table

Let's read an HTML table from Wikipedia. This is not technically a
file, but a piece of content from an html document

W World record progression x|\

[en.wikipedia.org/wiki/World_record_progression_1500_... &l @ ¢%7| £

#¢ Time o Name ¢ Nationality ¢ Date ¢ Meet ¢ | Location ¢
E&= London,
Great .
1 22:48.4 | Henry Taylor Britain Jul 25,1808 Olympic Games| United
Kingdom

-
=
2 | 22:00.0 ||George Hodgson &l Canada |Jul 10,1812 |Olympic Games|Stockholm,
Sweden
=
3 21:353 ||Ame Borg B Sweden |JulB, 1923 - Gothenburg,
Sweden
& Sydney,
Australia

4 | 21150 || Arne Borg BE= Sweden |Jan 30,1924 -

0 W Paris,
== Sweden |Jul13,1824 -
= France

5 | 21:11.4 || Ame Borg

http://e

kipedia.org/

ki/World_record_progres 500_metres_freestyle

http://en.wikipedia.org/wiki/World_record_progression_1500_metres_freestyle

To read an HTML table we need to use the function
readHTMLTable from the R package "XML"

load XML
library (XML)

url
swim_wiki = "http://en.wikipedia.org/wiki/World_record_progression_1500_metres_freestyle"

Since we want the first table, we specify the parameter which = 1

reading HTML table
swim1500 = readHTMLTable(swim_wiki, which = 1, stringsAsFactors = FALSE)

Note that we can pass data.frame() parameters, in this case
stringsAsFactors = FALSE

head (swim1500)

Time Name Nationality
1 1 22:48.4 Taylor , Henry Henry Taylor Great Britain
2 2 22:00.0 Hodgson , George George Hodgson Canada
3 3 21:35.3 Borg , Arne Arne Borg Sweden
4 4 21:15.0 Borg , Arne Arne Borg Sweden
5 5 21:11.4 Borg , Arne Arne Borg Sweden
6 6 20:06.6 Charlton , Boy Boy Charlton Australia
Date Meet

1 01908-07-25-0000Jul 25, 1908 Olympic Games

2 01912-07-10-0000Jul 10, 1912 Olympic Games

3 01923-07-08-0000Jul 8, 1923 -

4 01924-01-30-0000Jan 30, 1924 -

5 01924-07-13-0000Jul 13, 1924 -

6 01924-07-15-0000Jul 15, 1924 Olympic Games

Location Ref

1 United Kingdom, London ! London, United Kingdom

2 Sweden, Stockholm ! Stockholm, Sweden

3 Sweden, Gothenburg ! Gothenburg, Sweden

4 Australia, Sydney ! Sydney, Australia

5 France, Paris ! Paris, France

6 France, Paris ! Paris, France

R script and RData

Last but not least, we can also import data inside an R script and in
an .RData file. In this case the data files come from John
Maindonald's website
» The table is in the form of an R script
http://maths-people.anu.edu.au/~johnm/r/misc-data/travelbooks.R

» The other type of data is in reality a bunch of data sets in the
form of an .RDtat file
http://maths-people.anu.edu.au/~johnm/r/dsets/usingR.RData

http://maths-people.anu.edu.au/~johnm/r/misc-data/travelbooks.R
http://maths-people.anu.edu.au/~johnm/r/dsets/usingR.RData

Travelbooks Data

€« C' [maths-people.anu.edu.au/~johnm/r/misc-data/travelbooks.R adl & ©

m

“travelbooks" <-

structure(list(density = c(0.71, 0.88, 0.83, 1.13, 1.15, 0.91

), area = c(270.1, 245, 552, 601.4, 928.8, 306.5), type =
structure(as.integer(c(1,

1, 2, 2, 2, 1)), .Label = c("Guide", "Roadmaps"), class = "factor")), .Names =
c("density",

"area", "type"), row.names = c("Aird's Guide to Sydney", "Moon's Bustralia
handbook ",

"Explore Australia Road Atlas", "Australian Motoring Guide",

“Penguin Touring Atlas', "Canberra - The Guide"), class = "data.frame")

To read the script we simply need to use the function source ()

url
travelbooks = "http://maths-people.anu.edu.au/”johnm/r/misc-data/travelbooks.R"

sourcing file

source (travelbooks)

travelbooks

density area type
Aird's Guide to Sydney 0.71 270.1 Guide

Moon's Australia handbook 0.88 245.0 Guide
Explore Australia Road Atlas 0.83 552.0 Roadmaps
Australian Motoring Guide 1.13 601.4 Roadmaps
Penguin Touring Atlas 1.15 928.8 Roadmaps
Canberra - The Guide 0.91 306.5 Guide

.RData file usingR.RData contains several data frames

<« C' [maths-people.anu.edu.au/~jchnm/r/dsets/ Qg

Index of /~johnm/r/dsets

e Name Last modified Size Description

[s2 | Parent Directory -
-, README.xt 21-Oct-2004 14:41 790
2 | individual-dsets/ 03-Dec-2010 16:19 -
2 usingRRData 09-Oct-2004 22:25 95K

For those data sets that are inside an .RData file, we need to use
the function 1oad () and pass the file with url ()

let's remove all objects in session
rm(list = 1s())

url with .RData
load(url("http://maths-people.anu.edu.au/~ johnm/r/dsets/usingR.RData"))

list of read data sets

1s0

[1] "ais" "alpha_csv" "alpha_data" "alpha_x1s"
[6] "anesthetic" "austpop" "cars2004" "Cars93.summary"
[9] "dewpoint" "dolphins" "elasticband" "florida"

[13] "hills" "huron" i "iris_data"
[17] "islandcities" "kiwishade" "leafshape" "milk"

[21] "moby_dick" "moby_dick_chapl" "moby_text" "moths"

[25] "mycars" "myiris" "myRData" "myswim"

[29] "mytaxon" "oddbooks" "one_line" "orings"

[33] "possum" "primates" "r_home" "rainforest"
[37] "seedrates" "skip" "skulls" "su"

[41] "swim1500" "taxon" "thm" "tinting"

[45] "travelbooks"

